
NEXCESS.NET Internet Solutions
304 1/2 S. State St.
Ann Arbor, MI 48104-2445

h t t p : / / n e x c e s s . n e t

PHP / MySQL
SPECIALISTS!

Simple, Affordable, Reliable PHP / MySQL Web Hosting Solutions

POPULAR SHARED HOSTING PACKAGES

MINI-ME $695

POPULAR RESELLER HOSTING PACKAGES

500 MB Storage
15 GB Transfer
50 E-Mail Accounts
25 Subdomains
25 MySQL Databases
PHP5 / MySQL 4.1.X
SITEWORX control panel

/mo SMALL BIZ $2195

2000 MB Storage
50 GB Transfer
200 E-Mail Accounts
75 Subdomains
75 MySQL Databases
PHP5 / MySQL 4.1.X
SITEWORX control panel

/mo

NEXRESELL 1 $1695

900 MB Storage
30 GB Transfer
Unlimited MySQL Databases
Host 30 Domains
PHP5 / MYSQL 4.1.X
NODEWORX Reseller Access

All of our servers run our in-house developed PHP/MySQL

server control panel: INTERWORX-CP

INTERWORX-CP features include:

 - Rigorous spam / virus filtering

 - Detailed website usage stats (including realtime metrics)

 - Superb file management; WYSIWYG HTML editor

INTERWORX-CP is also available for your dedicated server. Just visit
http://interworx.info for more information and to place your order.

WHY NEXCESS.NET? WE ARE PHP/MYSQL DEVELOPERS

LIKE YOU AND UNDERSTAND YOUR SUPPORT NEEDS!

ORDER TODAY AND GET 10% OFF ANY WEB HOSTING PACKAGE
VISIT HTTP://NEXCESS.NET/PHPARCH FOR DETAILS

Dedicated & Managed Dedicated server so lut ions a lso ava i lab le

Serving the web since Y2K

/mo NEXRESELL 2 $5995

7500 MB Storage
100 GB Transfer
Unlimited MySQL Databases
Host Unlimited Domains
PHP5 / MySQL 4.1.X
NODEWORX Reseller Access

/mo

C O N T R O L P A N E L:

phpphp 5

phpphp 4

NEW! PHP 5 & MYSQL 4.1.X

PHP4 & MySQL 3.x/4.0.x options also available

We'll install any PHP extension you
need! Just ask :)

128 BIT SSL CERTIFICATES

AS LOW AS $39.95 / YEAR

DOMAIN NAME REGISTRATION

FROM $10.00 / YEAR

GENEROUS AFFILIATE PROGRAM

UP TO 100% PAYBACK

PER REFERRAL

30 DAY
MONEY BACK GUARANTEE

FREE DOMAIN NAME
WITH ANY ANNUAL SIGNUP

4.1.x

3.x/4.0.x

http://www.phparch.com/redir/391/949693
http://www.phparch.com/redir/391/949693

May 2005 ● PHP Architect ● www.phparch.com

FFEEAATTUURREE

22

Unicode is a single character set designed to
include characters from just about every writing
system on the planet (and off the planet—even

Klingon has been written for Unicode, although it is not
part of the official standard). In recent years, Unicode
has become more prevalent on the web, and all major
web browsers, web servers, programming languages,
and databases worth their salt now support it.
Switching your web applications to Unicode will give
you the ability to correctly handle and display any char-
acter from any language you’re likely to encounter.

Understanding the significance of Unicode requires
first understanding some basics of character sets, and
their history. The first thing you need to know was said
best by Joel Spolsky of Joel On Software: “There ain’t no
such thing as plain text.” If you don’t know the charac-
ter set and the encoding that were used in the creation
of a string of text, then you won’t know how to display
it properly. For modern purposes, the story of character
sets starts with ASCII. In the 1960s, unaccented English
characters, as well as various control characters for car-
riage returns, page feeds, etc., were each assigned a
number from 0 to 127; there was general agreement
on these number assignments, and so ASCII was born.
The ASCII characters could fit in 7 bits, and computers

used 8-bit bytes, which left an extra bit of space. This
led to the proliferation of hundreds of different charac-
ter sets, with each one using this extra space in a differ-
ent way. The characters from 0-127 are often referred
to as Lower ASCII, and the characters from 128-255 as

Many web sites cannot correctly interpret or display any-
thing other than English language characters. Converting
your site to UTF-8 (Unicode) enables you to handle char-
acters from almost any language in the world. However,
currently available conversion guidelines typically focus on
just a single software product, offering little guidance on
how to move UTF-8 encoded data between different prod-
ucts. Configuring your web server, PHP, and your database
to support UTF-8 is one thing—configuring them so UTF-
8 encoded data moves smoothly between them is anoth-
er. This article guides you through a UTF-8 conversion
using PHP, Oracle, and Apache. It also covers data exports
to PDF, RTF, email, and plain text.

Solving the Unicode Puzzle
by Michael Toppa

REQUIREMENTS
PHP 4.3.10 or higher

OS Any

Other Software Oracle 9, Apache, PDFLib

Code Directory n/a

REFERENCES

UNICODE hhttttpp::////wwwwww..uunniiccooddee..oorrgg//

UNICODE hhttttpp::////wwwwww..aallaannwwoooodd..nneett//uunniiccooddee//

ORACLE
hhttttpp::////wwwwww..oorraaccllee..ccoomm//tteecchhnnoollooggyy//
tteecchh//ooppeennssoouurrccee//pphhpp//gglloobbaalliizziinngg__
oorraaccllee__pphhpp__aapppplliiccaattiioonnss..hhttmmll

PHP
hhttttpp::////uuss33..pphhpp..nneett//mmaannuuaall//eenn//
rreeff..mmbbssttrriinngg..pphhpp

ii

FF
EE

AA
TT

UU
RR

EE

http://www.unicode.org/
http://www.alanwood.net/unicode/
http://www.oracle.com/technology/tech/opensource/php/globalizing_oracle_php_applications.html
http://www.oracle.com/technology/tech/opensource/php/globalizing_oracle_php_applications.html
http://us3.php.net/manual/en/ref.mbstring.php
http://us3.php.net/manual/en/ref.mbstring.php

Upper ASCII or Extended ASCII. Extended ASCII charac-
ter sets added characters from non-English languages,
special characters like copyright symbols, and line-
drawing characters to simplify drawing boxes, etc. With
all these different versions of extended ASCII floating
around, text generated on, say, a computer in Russia
would turn into gibberish if you tried to read it on a
computer in the US. This happened because the num-
ber codes representing the Cyrillic characters were
assigned to totally different characters on the US com-
puter. This became a bit of a problem when everyone
started using the internet.

Unicode represents an effort to clean up this mess.
The Unicode slogan is: “Unicode provides a unique
number for every character, no matter what the plat-
form, no matter what the program, no matter what the
language.” Unicode can do this because it allows char-
acters to occupy more than one byte, so it has enough
room to store characters from languages around the
world—even Asian languages that have thousands of
characters. With Unicode, it’s particularly important to
understand the distinction between a character set,
and character encoding. Unicode is a single character
set, but there are three different ways to encode it: they
are called UTF-8, UTF-16, and UTF-32 (there’s also UTF-
7, but it was never officially adopted by the Unicode
Consortium, and for the most part it’s been deprecated
in favor of UTF-8). The numbers 8, 16, and 32 indicate
the bits used for the Unicode code units (a complete
character may occupy more than one code unit—it can
be multi-byte). All three encodings can display any
Unicode character, and each has its own advantages
and disadvantages depending on what’s important in a
particular implementation. In the case of web applica-
tions, UTF-8 is the encoding of choice because it stores
the lower ASCII characters in a single byte format. This
makes UTF-8 fully compatible with “plain text,” even if
you’re clueless about character encoding.

For the sake of brevity, I’ve glossed over a great num-
ber of points related to Unicode and character sets. If
you want to learn more, I highly recommend the arti-
cle The Absolute Minimum Every Software Developer
Absolutely, Positively Must Know About Unicode and
Character Sets (No Excuses!) by Joel Spolsky, at
wwwwww..jjooeelloonnssooffttwwaarree..ccoomm//aarrttiicclleess//UUnniiccooddee..hhttmmll. It
contains links to a number of other good resources as
well.

Why Care About Unicode?
As far as Unicode and UTF-8 are concerned, all web
sites can be placed in one of three categories: those
that don’t need to care about them, those that should
convert to UTF-8, and those that should convert to
UTF-8 and internationalize.

The most common character set currently in use on
the English-speaking side of the web, other than UTF-8,
is Western ISO-8859-1 (aka Latin-1). If your site isn’t

already using UTF-8, then you’re probably using Latin-
1. If you’ve had no problems related to character sets
so far, and you have absolutely no foreseeable needs to
handle text outside the ASCII range, then you fall into
the first category: you probably don’t need to do any-
thing. As you’ll see in the rest of this article, converting
to UTF-8 is not a painless process, so you should only
undertake the work if you have some clearly identifi-
able, relevant goals to meet.

Here at the University of Pennsylvania School of
Medicine, we fall into the second category: our web
sites are in English, but we occasionally handle data
from a variety of foreign languages that don’t use the
English alphabet. We must receive, store, display, and
transmit these characters faithfully. Since we can’t reli-
ably predict what sort of characters might come our
way, converting our applications to UTF-8 was the log-
ical choice, since it can handle any language we might
need to support.

The third category is for sites that don’t just occasion-
ally handle foreign characters—they actually serve an
international audience. In addition to using UTF-8,
these sites typically employ various mechanisms that
allow visitors to choose the language for displaying
content. One important term applied here is interna-
tionalization, defined by the W3C as “[t]he process of
designing, creating, and maintaining software that can
serve the needs of users with differing language, cultur-
al, or geographic requirements and expectations” (see
hhttttpp::////wwwwww..ww33..oorrgg//TTRR//wwss--ii1188nn--sscceennaarriiooss//). Another
key term is localization: “[t]he tailoring of a system to
the individual cultural expectations for a specific target
market or group of individuals.” Sites that are able to
dynamically perform localization for a variety of target
audiences can do so because they’ve been configured
with a good internationalization framework.

Internationalization and localization are substantial
topics, and are not the focus of this article. However,
getting all the various components of your web appli-
cation environment to place nicely together using UTF-
8 is a necessary step before you can even try interna-
tionalizing your site. So this article will be of interest to
those who only want to handle the occasional non-
English characters, and to those who are contemplating
fully internationalizing their site.

Getting Ready for UTF-8
The first step is determining the scope of your work. At
a minimum, you probably have PHP, a web server, and
a database to consider. I’ll cover doing a UTF-8
conversion with PHP, Apache, and Oracle. If you
are also using Oracle, then you must read An
Overview on Globalizing Oracle PHP Applications at
hh tt tt pp :: // // ww ww ww .. oo rr aa cc ll ee .. cc oo mm // tt ee cc hh nn oo ll oo gg yy // tt ee cc hh //
oo pp ee nn ss oo uu rr cc ee // pp hh pp // gg ll oo bb aa ll ii zz ii nn gg __ oo rr aa cc ll ee __ pp hh pp __
aapppplliiccaattiioonnss..hhttmmll. It’s an excellent starting point, but,
unfortunately, it doesn’t always explain the reasons

FFEEAATTUURREE

May 2005 ● PHP Architect ● www.phparch.com

Solving the Unicode Puzzle

23

www.joelonsoftware.com/articles/Unicode.html
http://www.w3.org/TR/ws-i18n-scenarios/
http://www.oracle.com/technology/tech/opensource/php/globalizing_oracle_php_applications.html
http://www.oracle.com/technology/tech/opensource/php/globalizing_oracle_php_applications.html

behind its recommendations, which means you’ll get
stuck if things don’t happen to work after you follow its
instructions. I’ll try to fill those gaps.

You also have to take a look at any other applications
that interact with PHP, your web server, or your data-
base, as they will also be affected by a character set
conversion. For us, that included Smarty, PDFlib, and
exporting data to RTF, text files, and email, so I’ll dis-
cuss those as well. Even if you have a different mix of
applications, the concepts I’ll describe are probably
applicable to your situation, although the implementa-
tion specifics, obviously, will be different.

Configuring Apache, PHP, and Oracle
Most of the time, PHP web applications are run under
the Apache web server, which itself is running in a user
account (assuming you’re in a Unix-ish environment).
So, the first step is to set the environment of this

account correctly. Since PHP and Oracle are speaking to
each other through this account, it’s crucial to specify
the right character set for it, so they both know what to
expect. You do this by setting the NNLLSS__LLAANNGG environ-
ment variable in the Apache configuration. The Oracle
Overview document mentioned above says to set it to
..AALL3322UUTTFF88, but doesn’t fully explain why. So when this
didn’t do the trick for me, I had to do some more
research. I looked up the Oracle Character Set descrip-
tions and learned that ..AALL3322UUTTFF88 corresponds to
Unicode 3.1. After talking with our DBA I learned that
our Oracle database was set to Unicode 3.0, which
meant I needed to set NNLLSS__LLAANNGG==..UUTTFF88. Note that we
ultimately switched to ..AALL3322UUTTFF88, since it corresponds
to the latest version of Unicode, and in Oracle it allows
for conversion between UTF-16 and UTF-8 (just in case
you ever need to do that). The moral of the story is that
NNLLSS__LLAANNGG should exactly match the character set you’re
using in Oracle.

What I just said contradicts the advice of the Oracle
Overview document, where it says NNLLSS__LLAANNGG should be
set to match the client (in this case, PHP) but that it
doesn’t need to match the database character set.
That’s technically true, but a mismatch will quickly lead
to trouble if, for example, you try to insert records from
PHP that are in an encoding that’s not compatible with
the Oracle character set. If you’re going to switch to
UTF-8, do it wholeheartedly: set PHP, your web server,

and your database all to UTF-8. This will save you the
headache of translating character encodings as you
move data around.
NNLLSS__LLAANNGG is not the end of the story. It applies to the

communication between PHP and Oracle, but it does-
n’t determine how characters are encoded within PHP,
and it doesn’t influence how documents are served by
Apache. There are a few different approaches to consid-
er for having Apache and PHP serve your web pages in
UTF-8.

If you want all of the documents
on your server to default to UTF-8, one option is to
set the AAddddDDeeffaauullttCChhaarrsseett directive in the
Apache configuration to UTF-8. Note,
however, that the Apache documentation at
hhttttpp::////hhttttppdd..aappaacchhee..oorrgg//ddooccss--22..00//mmoodd//ccoorree..hhttmmll

does not express enthusiasm about this approach:
“AAddddDDeeffaauullttCChhaarrsseett should only be used when all of

the text resources to which it applies are known to be
in that character encoding and it is too inconvenient to
label their charset individually. One such example is to
add the charset parameter to resources containing gen-
erated content, such as legacy CGI scripts, that might
be vulnerable to cross-site scripting attacks due to user-
provided data being included in the output. Note,
however, that a better solution is to just fix (or delete)
those scripts…”

If you want all of your PHP-generated content to be
served in UTF-8, set ddeeffaauulltt__cchhaarrsseett==UUTTFF--88 in your
pphhpp..iinnii file. It’s OK if the PHP ddeeffaauulltt__cchhaarrsseett is differ-
ent from what’s specified in Apache AAddddDDeeffaauullttCChhaarrsseett:
the former will apply only to PHP files, and the latter
will apply to everything else.

If you want some (but not all) of your PHP documents
served in UTF-8, you don’t have to modify pphhpp..iinnii.
Instead, specify UTF-8 as the character set in the
CCoonntteenntt--ttyyppee header of those files. It’s important to
point out here that you should set this header with the
PHP hheeaaddeerr(()) function. If you try to set it with an HTML
Meta tag, and you’ve used Apache’s AAddddDDeeffaauullttCChhaarrsseett
directive to specify a different character set, the Apache
directive will override your Meta tag.

Now that you’ve configured how you want docu-
ments served, you need to configure PHP so it can
internally handle UTF-8. This means enabling multi-
byte character support. You’ll need to re-compile PHP

May 2005 ● PHP Architect ● www.phparch.com

FFEEAATTUURREE

24

Solving the Unicode Puzzle

“Switching your web applications to Unicode

will give you the ability to correctly handle and display

any character from any language you’re likely to encounter.“

http://httpd.apache.org/docs-2.0/mod/core.html
http://httpd.apache.org/docs-2.0/mod/core.html
http://www.php.net/header

with the --eennaabbllee--mmbbssttrriinngg option (unless, of course,
you had the foresight to do it previously), and set
mmbbssttrriinngg..iinntteerrnnaall__eennccooddiinngg==UUTTFF--88 in your pphhpp..iinnii file.

Look over the PHP documentation for multi-byte
string functions at hhttttpp::////wwwwww..pphhpp..nneett//rreeff..mmbbssttrriinngg.
Many of the PHP string functions have multi-byte
equivalents. An example is the best way to illustrate
what this means. The multi-byte version of ssttrrlleenn(()) is
mmbb__ssttrrlleenn(()). The ssttrrlleenn(()) function assumes that a
character always occupies a single byte, so it actually
returns the length of a string in bytes, and does not
necessarily indicate the number of characters. In UTF-8,
though, a string that is 4 characters long could occupy
anywhere from 4 to 24 bytes depending on the pres-
ence of multi-byte characters. The mmbb__ssttrrlleenn(()) function
will correctly tell you the number of characters in such
a string, but the regular ssttrrlleenn(()) function won’t.

Because of all this, you should consider enabling
PHP’s function overloading feature, described at
hhttttpp::////pphhpp..nneett//rreeff..mmbbssttrriinngg##mmbbssttrriinngg..oovveerrllooaadd.
Activating function overloading will cause PHP to auto-
matically assume it’s handling multi-byte strings, so—
continuing with the example—it will actually execute
mmbb__ssttrrlleenn(()) when you call ssttrrlleenn(()). If you’re making a
wholesale conversion to UTF-8, and you don’t want to
revise all of the string function calls in your existing
code, implementing function overloading makes sense.
But there are a couple of caveats:

Watch out for calls to ssttrrlleenn(()) (or any other string
function) where it really is intended to work with the
byte length, not the character length. In that situation,
function overloading will end up giving you an unin-
tended result. Fortunately, there is a workaround for
mmbb__ssttrrlleenn(()): it accepts a character set specification as a
second argument and if you pass in ‘latin1’ (even
though it’s actually handling a UTF-8 string). This will
cause the string to be evaluated as if it were single-byte
encoded. mmbb__ssttrrlleenn(($$yyoouurr__uuttff88__ssttrriinngg,, ‘‘llaattiinn11’’)) will
give you the number of bytes in a multi-byte string.

You may not want to do function overloading on
mmaaiill(()). I’ll explain why in the discussion of email below.
Note that if you haven’t upgraded to PHP 5, the
hhttmmll__eennttiittyy__ddeeccooddee(()) function will return an error if
you pass it a UTF-8 string. This was the only UTF-8
incompatibility we found in PHP 4.3.

Going back to Oracle, starting with Oracle 9i, it pro-
vides improved handling for multi-byte characters by
giving you a way to distinguish between byte length
and character length. When creating a table, you can
specify whether its length is defined in terms of charac-
ters or bytes. For example, VVAARRCCHHAARR22((2200 BBYYTTEE)) will give
you a 20-byte length field, and VVAARRCCHHAARR22((2200 CCHHAARR)) will
give you a 20-character length field. The default is BBYYTTEE,
which you can alter with the NNLLSS__LLEENNGGTTHH__SSEEMMAANNTTIICCSS
parameter—see your Oracle documentation for more
details.

Beware Windows-1252 in Web Forms
As I mentioned, other than UTF-8, the character encod-
ing you’re most likely to find on English-speaking web
sites, these days, is Latin-1 (aka Western ISO-8859-1).
One of the nice things about UTF-8 is that the first 256
characters are the same as in Latin-1. That is, the Latin-
1 ASCII characters and its Extended ASCII characters
live in the same numerical locations in UTF-8. If you’re
currently on Latin-1, this greatly eases the pain of
switching to UTF-8.

So, the big “however” comes from—you guessed it—
Windows. Fortunately, Windows NT, 2000, and XP use
Unicode internally and shouldn’t cause headaches for a
UTF-8 web site. But Windows 95 and 98 use the
Windows-1252 character set. Its standard ASCII charac-
ters from 0-127 are the same as Latin-1 and UTF-8, but
its Extended ASCII set is different. If you have a form on
a web page that’s UTF-8 encoded, and someone run-
ning Windows 9x fills out the form by copying-and-
pasting text from Microsoft Word, Extended ASCII
characters may be interpreted properly. You may have
experienced this before: for example, the “©©” symbol in
your Word document turned into something like “ää”
when you pasted it into a form. Nothing about the
character’s underlying data changed—the decimal rep-
resentation of the character is the same as it was
before—it just means something different in UTF-8
than it does in Windows-1252.

This was more of a problem in the past than it is now,
as modern browsers try to transparently perform a
character set conversion for you as needed in these sit-
uations. But the problems are by no means entirely
resolved: see FORM submission and i18n at
hhttttpp::////ppppeewwwwww..pphh..ggllaa..aacc..uukk//~~ffllaavveellll//cchhaarrsseett//
ffoorrmm--ii1188nn..hhttmmll for a thorough overview of all the
issues related to this, as well as a rundown of how the
major browsers behave (if you’re wondering about the
meaning of i18n, it’s short-hand for internationaliza-
tion).

What makes this a truly maddening problem is con-
verting a Latin-1 encoded database to UTF-8 when
some of the data in it came from Latin-1 encoded web
forms where users pasted in Windows-1252 text, and
their browsers didn’t convert the characters properly.
There is no easy fix for this, as you simply have to look
at the records yourself to see if the Extended ASCII
characters are displaying as the user intended, or if
there was a character set conversion problem along the
way.

UTF-8 Support in Smarty
Smarty handles UTF-8 transparently—almost. The one
trouble spot is the eessccaappee modifier. It calls the PHP
hhttmmlleennttiittiieess(()) and hhttmmllssppeecciiaallcchhaarrss(()) functions, but
it doesn’t provide them with the necessary charset
argument so they’ll work with UTF-8. The solution is to

FFEEAATTUURREE

May 2005 ● PHP Architect ● www.phparch.com 25

Solving the Unicode Puzzle

http://www.php.net/ref.mbstring.
http://php.net/strlen
http://php.net/mb_strlen
http://php.net/strlen
http://php.net/mb_strlen
http://php.net/strlen
http://php.net/ref.mbstring#mbstring.overload
http://php.net/mb_strlen
http://php.net/strlen
http://php.net/strlen
http://php.net/mb_strlen
http://php.net/mail
http://php.net/html_entity_decode
http://ppewww.ph.gla.ac.uk/~flavell/charset/form-i18n.html
http://ppewww.ph.gla.ac.uk/~flavell/charset/form-i18n.html
http://php.net/htmlentities
http://php.net/htmlspecialchars

override eessccaappee with your own custom version. Start by
making a copy of the Smarty eessccaappee modifier, and
tweak it to pass along a charset argument to PHP. Then
override the original with your custom version. If you
won’t always be using UTF-8, set your custom version
to accept a charset argument, so you can adjust the
functionality as needed. Look up the “Extending
Smarty with Plugins” section of the manual on the
Smarty site—[http://smarty.php.net/]—for instructions
on how to customize Smarty.

Exporting UTF-8 Data to PDF, RTF, Plain

Text, and Email
It may not always be wise, or even possible, to keep
data encoded in UTF-8 when exporting to other for-
mats. As you’ll see below, sometimes you need to
change the character set before performing the export.
Take a look at PHP’s uuttff88__ddeeccooddee(()) and iiccoonnvv(()) func-
tions to learn about converting UTF-8 to single-byte
encoding. Note that uuttff88__ddeeccooddee(()), while easy to use,
is limited to the Latin-1 character set (see the user con-
tributed notes on the PHP uuttff88__ddeeccooddee(()) page for tips
on dealing with other character sets).

Our applications require exporting data to PDF, RDF,
text files, and email:

To generate PDF, we run the PDFlib application on
our web server to create PDF documents on the fly.
PDFlib is an application specifically designed for pro-
cessing PDF data and dynamically generating PDF doc-
uments—you can learn more about it at
hhttttpp::////wwwwww..ppddfflliibb..ccoomm//. For it to work with UTF-8
data, you need to use it with a UTF-8 compatible font.
The commonly used Windows TrueType fonts—Arial,
Times New Roman, and Courier New—are Unicode
compliant. However, that doesn’t mean they can dis-
play any Unicode character. They are fine for English
and most Central and Eastern European
languages. For more on this, see the Font
section of Alan Wood’s Unicode Resources at
hhttttpp::////wwwwww..aallaannwwoooodd..nneett//uunniiccooddee//. It’s important to
mention Microsoft’s Arial Unicode MS font, which is
not the same as the standard Arial font. Arial Unicode
MS can display characters from Arabic, Tamil, Thai,
Hangul, Chinese, and many other languages. This
means the font itself is huge: approximately 23Mb. If
you try to use it with PDFlib running on your web serv-
er, you may run into performance problems.

If you are using, for example, Microsoft Word,
it’s easy to take a Unicode document and save it
as an RTF file. It’s also not difficult to use a tool
like RTF File Generator (available at
hhttttpp::////wwwwww..ppaaggggaarrdd..ccoomm//pprroojjeeccttss//rrttff..ggeenneerraattoorr//) to
generate RTF files using PHP, as long as the source data
does not include characters from multiple languages. It
turns out to be quite difficult to use PHP to generate an
RTF file when the source data is UTF-8 encoded and

contains characters from several different languages.
This is because RTF requires you to specify a character
set for displaying the characters, and you can’t just say
“Unicode.” You have to specify one or more ANSI, PC-
8, Mac, or IBM PC character sets. This means you must
analyze the multi-byte characters in a UTF-8 string and
figure out what characters they represent. Then you
need to specify in the header of the RTF file what char-
acter sets are needed to display them: a Hebrew char-
acter set for Hebrew characters, Arabic for Arabic, etc.
Then in the body of the file you must flag the various
chunks of non-English text and indicate which of these
character sets are needed to display them. Rather than
attempting this Herculean task, our solution is to do a
uuttff88__ddeeccooddee(()) on our data before generating RTF files,
so that the text is all in Latin-1. At the moment we can
get away with this since none of the data going into the
RTF files we currently generate contain non-English
characters. We are planning to eventually discontinue
our RTF support, so this will not be a long-term prob-
lem. Acquiring an understanding of how RTF works
with Unicode data was difficult—of all the applications

we encountered in this project, RTF was the least well
documented when it came to Unicode.

We export data to text files, primarily in ..ccssvv format
for use in spreadsheets. Surprisingly, current versions of
Microsoft Excel do not support importing UTF-8 encod-
ed text files. As with RTF, our solution is to perform a
uuttff88__ddeeccooddee(()) before generating these text files. This
doesn’t pose any problems for us since the kind of data
we put in spreadsheets does not contain any non-
English characters.

As I mentioned, I do not recommend doing function
overloading on the PHP mmaaiill(()) function. The reason
has to do with line breaks. In Unix, a line break is rep-
resented by a line feed (LLFF, or \\nn) character, on Macs,
it’s represented by a carriage return (CCRR, or \\rr) charac-
ter, and on Windows, by a CCRR++LLFF (\\rr\\nn). For email to
work between platforms, an email standard was agreed
upon in the early days of the internet, which is CCRR++LLFF.
So, for example, on Unix, sendmail will add a CCRR as

May 2005 ● PHP Architect ● www.phparch.com

FFEEAATTUURREE

26

Solving the Unicode Puzzle

“Unicode allows characters to

occupy more than one byte,

so it has enough room to

store characters from

languages around the world.“

http://www.php.net/utf8_decode
http://www.php.net/iconv
http://www.php.net/utf8_decode
http://www.php.net/utf8_decode
http://www.pdflib.com/
http://www.alanwood.net/unicode/
http://www.paggard.com/projects/rtf.generator/
http://www.php.net/utf8_decode
http://www.php.net/utf8_decode
http://php.net/mail

needed to each LF it finds in the body of an email mes-
sage. But when an email is UTF-8, PHP will first base64
encode it before passing it off to sendmail. This encod-
ing is done so that multi-byte UTF-8 characters can be
transported within the 7-bit world of email (for more
about this, see Advanced E-mail Manipulation by Wez
Furlong, php|architect Vol. 3, Iss. 5). Sendmail and
other mailers do not attempt to wade through the
base64 encoding to “fix” the line breaks. Unless you’re
careful to put CCRR++LLFF line breaks in all your PHP generat-
ed emails before sending them, you’ll end up sending
emails with improper line breaks. This can have unpre-
dictable results, as you’re at the mercy of the recipient’s
email client software, and what it chooses to do with
malformed line breaks. In our testing, we found that
the LLFF-only line breaks in our UTF-8 encoded emails
were interpreted as desired in Mac and Unix mail read-
ers, and by Microsoft Outlook on Windows, but not by
Eudora 6.2 (and previous versions) on Windows. In
Eudora, the messages displayed with no line breaks at
all. You can’t say it’s a Eudora bug, since the line breaks
weren’t meeting the standard. At this time, the emails
we generate only contain basic English characters, so
sticking with the standard mmaaiill(()) function meets our
needs for now.

The Bumpy Road to Unicode Compliance
As you can see, converting your web site to UTF-8 is by
no means a painless process. But the payoff is worth it
if you plan to support characters from several lan-
guages. It’s also a fascinating educational experience:
you’ll gain a stronger understanding of how Apache,
Oracle, and PHP interact, how Unicode supports so
many different languages, some of the gory details of
how email works, how browsers deal with mismatching
character sets, what a Unicode compliant font is, and
much more. Even if you’re not using the same software
discussed in this article, hopefully I’ve at least imparted
a sense of what kinds of problems you should look out
for. If nothing else, hopefully you’ll remember, “there
ain’t no such thing as plain text.”

FFEEAATTUURREE

May 2005 ● PHP Architect ● www.phparch.com 27

Solving the Unicode Puzzle

Available Right At Your Desk
All our classes take place

entirely through the Internet

and feature a real, live instructor

that interacts with each student

through voice or real-time

messaging.

What You Get
Your Own Web Sandbox

Our No-hassle Refund Policy

Smaller Classes = Better Learning

Curriculum
The training program closely

follows the certification guide—

as it was built by some of its

very same authors.

Sign-up and Save!
For a limited time, you can

get over $300 US in savings
just by signing up for our

training program!

New classes start every three weeks!

http://www.phparch.com/cert

About the Author ?>

To Discuss this article:

http://forums.phparch.com/219

Michael Toppa is a web applications developer at the University of
Pennsylvania School of Medicine. He has previously worked for Ask
Jeeves, E*TRADE, and Stanford University Libraries’ HighWire Press. He
can be found on the web at wwwwww..ttooppppaa..ccoomm. Credit for a lot of the
research in this article goes to all of the U Penn School of Medicine Web
Development team.

http://www.phparch.com/redir/373/353160
http://www.phparch.com/redir/400/726200
http://forums.phparch.com/219
www.toppa.com

